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a b s t r a c t

The reduction of incidental capture of non-target species in a fishery (bycatch) is a key objective of
ecosystem-based fisheries management (EBFM) and critical to the conservation of many marine species.
Predicting bycatch events can inform targeted ecosystem-based management approaches to reduce risk.
Here, the probability of ocean sunfish (Mola mola) and bluefin tuna (Thunnus orientalis) bycatch in the
California large-mesh drift gillnet fishery is predicted using a suite of remotely-sensed environmental
variables. Generalized additive models (GAMs) were used to model bycatch probability for these species
in 8045 observed sets from 1990 to 2011, and predictive capabilities were assessed using k-fold cross
validation. Bycatch probabilities for both species were elevated in regions of cool sea surface temperatures
(<17 ◦C), likely related to seasonal upwelling dynamics in the California Current, a major eastern boundary
upwelling ecosystem. Mola bycatch occurred primarily in late fall, at moderate eddy kinetic energy values
(0.006–0.008 m2/s2) and in areas of high seafloor rugosity. Bluefin tuna bycatch rates were higher west
of the Southern California Bight, also in late fall, and appear to be associated with the seasonal upwelling
frontal zone. These models can be used with near-real time satellite data by both fishers and managers
for bycatch avoidance, providing a tool for more dynamic ocean management strategies.

© 2017 Elsevier B.V. All rights reserved.
. Introduction

Ecosystem-based fisheries management (EBFM) is a holistic

(Hobday and Hartog, 2014; Maxwell et al., 2015). When in situ
data are collected at spatiotemporal ranges and resolutions that
are insufficient for prediction, a comparative wealth of remotely-
pproach towards maximizing sustainability in fisheries, but effec-
ive EBFM implementation requires better understanding of the
omplex trophic and environmental interactions that sustain a
iven ecosystem (Essington et al., 2015; Lindegren et al., 2009;
arge et al., 2015). Advances in remote sensing technologies and
odeling techniques have created valuable tools to help char-

cterize those interactions. These tools have generated interest
n dynamic management strategies that incorporate near-real-
ime model predictions based on dynamic oceanographic variables
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sensed data can often be used in addition to (e.g. Nakada et al.,
2014) or instead of (e.g. Reiss et al., 2008) in situ data. In many cases,
models using remotely-sensed data have been shown to match or
surpass the predictive capability of their in-situ-only counterparts
in predicting important oceanographic features and species habitat
preferences (Takano et al., 2009; Becker et al., 2010; Palamara et al.,
2012).

One application of habitat-based models in EBFM is reducing
incidental catch of non-target species. Bycatch mitigation is of par-
ticular interest due to the potential for negative ecological (Zhang
et al., 2016) and economic (Kasperski, 2016) impacts on fisheries.
Models incorporating near-real-time dynamic ocean variables hold
potential as an important component of bycatch mitigation strate-
gies (Lewison et al., 2015). Hartog et al. (2010) demonstrated
der the Elsevier user license

der the Elsevier user license
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Fig. 1. Spatial distribution of cumulative effort (observed sets) in the California com-
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ercial drift gillnet fishery from 1990 to 2011. Coastal administrative boundaries
re provided for spatial reference (WA  = Washington; OR = Oregon; CA = California;
X  = Mexico). Darker areas indicate higher fishing effort; white indicates no effort.

hat yellowfin (Thunnus albacares) and Southern bluefin (Thun-
us maccoyii) tuna stocks can be separated in space and time
sing models to predict environmentally-driven variation in habi-
at overlap. In addition, Dunn et al. (2016) showed that Atlantic cod
Gadus morhua) fisheries achieved lower bycatch ratios when using
ynamic approaches to direct fishing activity.

Ocean sunfish (Mola mola) and Pacific bluefin tuna (Thunnus
rientalis) are incidentally caught in the limited-entry California
ommercial large mesh, drift gillnet (CA DGN) fishery. The fish-
ry was founded on harvest of common thresher shark (Alopias
ulpinus) off the entire United States West Coast, but in the early
ears of the fishery broadbill swordfish (Xiphias gladius)  replaced
ommon thresher as the primary target. A number of time-area clo-
ures have been added over the years to protect a variety of species,
articularly pregnant thresher sharks and endangered leatherback
Dermochelys coriacaea) and loggerhead (Caretta caretta)  sea turtles
Carretta et al., 2014). As a result of these management measures,
he extent and magnitude of effort have decreased dramatically
ver time; beginning after the leatherback closure in 2001, effort
ecame confined primarily to the Southern California Bight from
ctober–December, while cumulative effort encompasses a greater

patiotemporal range (Fig. 1).
While large numbers of finfish are incidentally caught in the

A DGN fishery, they have received less attention than protected
pecies with regards to bycatch reduction. Mola comprise the
argest catch of any single species in the CA DGN fishery at more
han 2500 individuals per year in observed sets from 1990 to 2011,
hich is more than three times the target catch of swordfish (NMFS,

016). In addition, approximately 190 bluefin tuna were caught per
ear in observed sets during this time period, totaling nearly one-

ourth of swordfish catch by number of individuals. Though both
pecies are considered incidental catch, most bluefin are retained
nd sold while 95% of Mola are released alive, although post-release
urvival is unknown (Thys et al., 2015). Though Mola mortality from
arch 191 (2017) 154–163 155

the fishery is thought to be low, Mola comprise a large fraction
of total catch in California (Cartamil and Lowe, 2004) and other
drift gillnet fisheries worldwide (e.g. Silvani et al., 1999; Akyol
et al., 2005) which provides a motive for understanding factors
contributing to their high bycatch rates. Bluefin tuna are commer-
cially valuable and populations are overfished (ISC, 2016); thus
even moderate bycatch of this species is of particular interest to
management and conservation efforts.

Both Mola and bluefin tuna use the California Current Large
Marine Ecosystem (CCLME) as a foraging ground. Environmental
conditions in the area of the CCLME targeted by the fishery are
dominated by seasonally and locally variable upwelling systems.
Upwelling tends to be stronger, though more variable, with increas-
ing latitude, and the duration of the season decreases from nearly
year-round off Southern California to spring and summer months
off the Washington coast (Bograd et al., 2009; Black et al., 2011).
Tracking studies suggest that both Mola (Thys et al., 2015) and
bluefin tuna (Boustany et al., 2010) associate with these produc-
tive upwelling zones in the CCLME. This upwelling association is
expected to play a major role in bycatch rates for both species;
however, differences in foraging strategies may yield different rela-
tionships with similar environmental factors. Bluefin feed primarily
on fish, squid and crustaceans (Pinkas et al., 1971) while Mola feed
on jellyfish (Fraser-Brunner, 1951). This study seeks to identify key
environmental influences on bycatch rates of Mola and bluefin tuna
in the CA DGN fishery, ultimately to inform dynamic bycatch reduc-
tion models.

2. Methods

Catch data were collected from the CA DGN fishery through the
NMFS West Coast Region Observer program from 1990 to 2011. A
range of data were recorded for the 8045 observed sets, including
date, soak time, coordinates, number of individuals of each species
caught and their disposition if released. Of these, 12 outliers with
soak times >3 sd from the mean (greater than 21 h) and one set with
a missing soak time were excluded, and soak time was not consid-
ered as a variable in further analysis. Number of Mola and bluefin
tuna caught was  converted to presence or absence for each set with
bycatch rate for a given time or spatial stratum being defined as
the proportion of sets with positive catch. Mola and bluefin tuna
were present in approximately 75% and 12.5% of total sets from
1990 to 2011 respectively. Observer coverage for the catch dataset
was approximately 15% of all sets within the fishery for 1990–2011
(Martin et al., 2015). A variogram was  used to assess spatial autocor-
relation (rgdal, sp and gstat packages for R 3.2.1; Bivand et al., 2016;
Bivand et al., 2013; Pebesma and Bivand, 2005; Pebesma, 2004; R
Core Team, 2015) and the maps, mapdata and raster packages for
R (Becker et al., 2015a,b; Hijmans, 2015) were used to visualize
specific patterns in spatially autocorrelated bycatch data.

A suite of remotely-sensed environmental variables, including
sea surface temperature (SST), chlorophyll-a concentration, zonal
and meridional geostrophic velocities, sea surface height anomaly
(SSH-a), zonal and meridional wind vectors and bathymetry, was
downloaded from the NOAA ERDDAP server (Simons, 2015). These
data were paired spatially and temporally with each set. Several
derived variables were also calculated from the raw data. The stan-
dard deviations of bathymetry and SST were used as indices of
rugosity and spatial variation in temperature respectively. Eddy
kinetic energy (EKE) was calculated from the geostrophic current
anomalies. The resolutions and sources for all remotely-sensed

variables are summarized in Table 1. Month and latitude-longitude
coordinates for each set were also considered as variables.

To address zero-inflation and autocorrelation among consecu-
tive sets, data were aggregated by month. Binary bycatch data for
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Table 1
Remotely-sensed variables used in construction of a priori Mola and bluefin tuna bycatch models. The original data source, spatiotemporal resolution, temporal availability
and  percent coverage of 8045 total gillnet sets are provided for each variable. A dash (−) indicates the specified value is not applicable to the specified variable. An asterisk
(*)  denotes variables affected by clouds.

Variable Source URL Temporal
Resolution

Spatial
Resolution

Temporal
Availability

Coverage of
Total Sets

Sea Surface Temperature (SST)* Pathfinder AVHRR, Ver. 5.0,
Global

http://coastwatch.pfeg.noaa.
gov/erddap/info/
erdPHssta8day/index.html

8-day 0.044◦ Jul 1990–Dec 2007 89%

SST  Spatial Variability* St. dev. of SST (above) 8-day 0.044◦ (above) 88%
Sea  Surface Height Anomaly

(SSH-a)
AVISO Maps of Sea Level
Anomaly: Height (MSLA-H),
Global

http://coastwatch.pfeg.noaa.
gov/erddap/info/
erdTAssh1day/index.html

1-day 0.25◦ Oct 1992–Dec 2012 74%

Eddy  Kinetic Energy (EKE) Derived from AVISO UV Maps
of Geostrophic Velocity
Anomalies (MSLA-UV), Global:
½(u2 + v2)

http://coastwatch.pfeg.noaa.
gov/erddap/info/
erdTAgeo1day/index.html

1-day 0.25◦ Oct 1992–Dec 2012 72%

Chlorophyll-a*  SeaWIFS Orbview-2, Global http://coastwatch.pfeg.noaa.
gov/erddap/info/
erdSWchla8day/index.html

8-day 0.1◦ Sept 1997–Dec 2010 42%

Wind  Velocity QuikSCAT SeaWinds, Global http://coastwatch.pfeg.noaa.
gov/erddap/info/
erdQSwind3day/index.html

3-day 0.1◦ Jul 1999–Nov 2009 35%

Bathymetry ETOPO1 Topography, Ice Sheet http://coastwatch.pfeg.noaa.
nfo/et

– 0.017◦ – 100%

M
o
t
m
w
e
(
o
r
t
m
s
t
f

t
d
m
b
t
s
e
t
w
1
s
o
t
P
t
C
c
w
(

f
K
e
s
i
t

Surface version, Global gov/erddap/i
index.html

Seafloor rugosity St. dev. of bathymetry (above) 

ola and bluefin tuna were converted to a monthly proportion
f sets with non-zero bycatch, and the results were paired with
he mean of each environmental variable for the corresponding

onth (n = 143). Multicollinearity among the predictor variables
as assessed by calculating the variance inflation factor (VIF) for

ach monthly aggregated variable. All VIF values except latitude
7.0) and longitude (13.0) were below the recommended thresh-
ld of 3.0 (Zuur et al., 2009). If either longitude or latitude were
emoved from the predictor dataset, the VIF of the other was less
han 4.0; thus, longitude and latitude were never used in the same

odel. Six EKE outlier values from a region of poor sampling den-
ity (>2.5 standard deviations from the mean) were removed from
he dataset due to disproportionately high influence on model per-
ormance in all but one of the model candidates.

Based on preliminary exploration of the aggregated dataset and
he ecological literature for each species, 12 a priori model candi-
ates were constructed for each species using generalized additive
odels (GAMs). GAMs have been used successfully to model both

ycatch (Martinez-Rincon et al., 2015; Zydelis et al., 2011) and habi-
at preferences (Becker et al., 2010; Stoner et al., 2001) of marine
pecies, as well as ecological indicators (Large et al., 2015) using
nvironmental predictor variables. Each model candidate was fit-
ed using a binomial family with a logistic link function and data
ere weighted according to monthly sample size using the mgcv

.8.6 package in R (Wood, 2006). In addition to a priori model con-
truction, the monthly aggregated data were used for assessment
f possible correlation between bycatch rate and the regime of
he Pacific Decadal Oscillation (PDO) determined from the summer
DO index (Mantua et al., 1997). Based on the negative correla-
ion between the PDO and upwelling across the United States West
oast (Macias et al., 2012) and an expected effect of upwelling asso-
iation on bycatch rates in both species, a Mann-Whitney U test
as used to compare bycatch rates of each species during positive

warm) and negative (cool) PDO regimes.
To reduce problems with stepwise model selection such as high

requency of noise variables (Lukacs et al., 2010; Derksen and
eselman, 1992) and multiple hypothesis testing (Whittingham

t al., 2006), a k-fold cross validation approach (k = 100) was  used to
elect a final model. Data points were divided randomly into a train-
ng set (80%) and a testing set (20%) and the model was  “trained” (fit
o the training set only). The trained model was then used to predict
opo360/

– 0.017◦ – 100%

the response from the testing set. This process was repeated 100
times, and a least-squares linear regression of observed vs. median
predicted response was  performed. The final model was chosen
using the slope and r2 of this regression (hereafter denoted bp and
rp2) as predictive performance metrics.

3. Results

A variogram of monthly Mola bycatch rates across the entire
timespan of the dataset (1990–2011) revealed nearly constant
variance with respect to distance between sets, indicating lit-
tle spatial autocorrelation in Mola bycatch. Distributions of high
and low Mola bycatch were essentially homogeneous across the
spatial extent of fishing effort (Fig. 2). In contrast, bluefin tuna
bycatch exhibited an asymptotic threefold increase in variance
with increasing distance between sets. Most high bycatch rates
occurred along a linear band roughly parallel to the coast, extend-
ing from inshore waters near Central California to 150–200 km
offshore in the Southern California Bight (Fig. 3). Monthly distri-
butions of bycatch rate revealed annual peaks late in the season for
both species that generally aligned with fishing effort, with max-
imum Mola bycatch in November-January and maximum bluefin
tuna bycatch in October-December (Fig. 4). Annual peak bycatch
rate exceeded 0.9 for Mola nearly every year (median = 0.73), while
peak bluefin tuna bycatch rate displayed higher interannual vari-
ation (approx. 0.1–0.4; median = 0.07; Fig. 5). Correlation between
the regime of the Pacific Decadal Oscillation (PDO) and bluefin tuna
bycatch rate proved significant (warm regime median 0.04; cool
regime median 0.1; p < 0.05); in contrast, Mola bycatch rate exhib-
ited no such correlation (warm regime median 0.74; cool regime
median 0.73; p > 0.05).

The final Mola bycatch model included month, EKE, SST and
rugosity as predictor variables (rp2 = 0.52; bp = 0.58; 63% deviance
explained). The model indicated a strong increase in bycatch prob-
ability over the course of the fishing season, though the period
of maximum predicted bycatch probability preceded the observed
maximum in monthly distributed bycatch rates by approximately

1 month. Higher bycatch probability was also predicted in areas
of cool surface waters (<17 ◦C) relative to the range encountered
by the fishery (14–22 ◦C; Fig. 6). The model further suggested that
bycatch probability is higher in areas with moderate EKE val-
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ig. 2. Spatial distribution of Mola bycatch rate from 1990 to 2011. Bycatch rate i
arker grid cells indicate higher bycatch rate, expressed in probability units (0–1).

es (0.006–0.008 m2/s2) and high rugosity (175–225 m) relative to
he full ranges of these parameters (0–0.016 m2/s2 and 80–270 m
espectively), though these effects were less pronounced. One
ther candidate model performed similarly to the final model dur-

ng validation (rp2 = 0.51; bp = 0.62; 67.5% deviance explained) and
ncluded the same predictor variables plus chlorophyll-a concen-
ration. Chlorophyll-a data coverage was sparse compared to other
ariables (see Table 1), and its inclusion in the model reduced the
ample size of monthly aggregated data from n = 92 to n = 66. The
ow effect size for chlorophyll-a and similar smooths for other
ncluded variables at the cost of this large reduction in sample
ize was the basis for rejection of this model in favor of the final
odel. Comparison of the final model with (n = 98) and without EKE

utliers indicated negligible difference between all corresponding

mooths outside of the removed values.

The final bluefin tuna bycatch model included EKE, SST,
hlorophyll-a concentration and longitude (rp2 = 0.53; bp = 0.56;
2% deviance explained). Compared with the Mola model, high
ed as the fraction of total sets within that cell containing at least one individual.
ells are 0.25◦ squares. The black line indicates the Pacific coast of North America.

bluefin tuna bycatch was similarly observed at low SST (<17 ◦C) and
moderate EKE (0.005-0.007 m2/s2), though EKE exhibited a smaller
effect size on bycatch of bluefin tuna than Mola (Fig. 7). Higher
bycatch probabilities were predicted west of the Southern Califor-
nia Bight (>119◦W), and in regions with low surface chlorophyll-a
concentrations (<0.3 mg/L) compared to the range of conditions
encountered by the fishery (117−123◦W and 0.0–1.0 mg/L respec-
tively). A slight increase in bycatch probability was also predicted
for the upper range of chlorophyll-a concentrations (0.8–1.0 mg/L)
but 95% confidence intervals indicate this prediction is highly
uncertain due to low sampling density in this region.

4. Discussion
Avoiding harmful interactions with non-target species while
maintaining sustainable target species catch is both a formidable
challenge and a crucial step towards successful EBFM. Complex
models that link incidental catch data to environmental conditions
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Fig. 3. Spatial distribution of bluefin tuna bycatch rate from 1990 to 2011. Bycatch rate is defined as the fraction of total sets within that cell containing at least one individual.
Darker grid cells indicate higher bycatch rate, expressed in probability units (0–1). Grid cells are 0.25◦ squares. The black line indicates the Pacific coast of North America.

Fig. 4. Monthly distributions of Mola (left) and bluefin tuna (right) bycatch rates from 1990 to 2011. Bycatch rate is defined as the fraction of total sets per month containing
at least one individual. The dark bar, top and bottom box edges and dotted line ends represent the median, 75th and 25th percentiles and range respectively.



N. Hahlbeck et al. / Fisheries Research 191 (2017) 154–163 159

Fig. 5. Time series of monthly aggregated bycatch rate for Mola (top) and bluefin tuna (bottom). Bycatch rate is defined as the fraction of total sets per month containing at
least  one individual. The closed and open circles correspond to the regime of the Pacific Decadal Oscillation (PDO; Mantua et al., 1997). Closed and open circles indicate years
of  positive (warm) and negative (cool) PDO regimes respectively.

Fig. 6. Smooth functions for variables from the final Mola bycatch model, including (a) month, (b) EKE, (c) SST and (d) seafloor rugosity. Effect size for each variable is
expressed in probability units (0–1) and indicates the individual contribution of that variable to total bycatch probability. Dashed lines indicate upper and lower 95%
confidence intervals. Tick marks above the x-axis indicate sampling density across the independent variable range. Sampling density of the “month” variable is described in
more  detail in Supplemental Materials.
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ave the potential to be an effective tool for reducing bycatch in
arine fisheries. The potential to predict the distribution of bycatch

n near-real time opens the door to dynamic management based
n oceanographic conditions rather than static time-area closures
hat may  be unnecessarily restrictive and reduce fishing opportu-
ity and economic viability (Hobday and Hartog, 2014; Maxwell
t al., 2015; Lewison et al., 2015). The majority of studies modeling
ycatch have focused on protected species (e.g. Zydelis et al., 2011;
artin et al., 2015). We  apply the same tools to finfish and broaden

he scope of bycatch reduction efforts and EBFM.
Bycatch rates of Mola in the CA DGN fishery exhibit low inter-

nnual variability and are higher in fall to early winter, in cooler
ea surface temperatures (<17◦ C) and in association with complex
eafloor topography. These associations imply a link with upwelling
n the CCLME. Upwelling of cool, nutrient-rich waters likely pro-
ides the main source of primary productivity to sustain the
rowth of gelatinous zooplankton populations upon which Mola
rey (Ware and Thomson, 2005). Areas with abrupt topographic
hange and moderate EKE values within the approximate depth
ange represented in the final model (1537 ± 611 m;  mean ± sd)
ould provide a physical environment conducive to zooplankton
oncentration (Santora et al., 2012; Genin, 2004; Graham et al.,
001) which in turn provides forage for these gelatinous zooplank-
on. The timing of high predicted bycatch rates corresponds to the
ater upwelling season across much of California (Bograd et al.,
009) which could indicate a time lag from the seasonal maximum
equired for sufficient trophic transfer of upwelled nutrients to

upport large gelatinous zooplankton aggregations. Alternatively,
ola could spend the earlier upwelling season taking advantage

f seasonal jellyfish blooms in other highly productive areas, such
ng (a) EKE, (b) SST, (c) chlorophyll-a and (d) longitude. Effect size for each variable
 variable to total bycatch probability. Dashed lines indicate upper and lower 95%
dependent variable range.

as Chrysaora spp. in the Northeast Pacific during July–September
(Suchman et al., 2012).

Mola are known to associate with fronts and display vertical
migratory behavior, foraging in association with the deep-
scattering layer along frontal boundaries where zooplankton often
concentrate (e.g. Dewar et al., 2010; Nakamura et al., 2015; Sousa
et al., 2016; Cartamil and Lowe, 2004). Thys et al. (2015) used an
individual with a Fastloc GPS tag to analyze association with fine-
scale ocean features and found that tag locations matched the cold
side of a front peripheral to an upwelling zone. The lack of a signif-
icant relationship with spatial variability of SST in this study was
probably due to its crudeness as an indicator of complex frontal
structure that tends to occur on shorter time scales, and a more
targeted metric may  yield an association similar to those described
elsewhere (e.g. Miller et al., 2015; Scales et al., 2014). Though the
model exhibited no direct evidence of frontal association, the link to
upwelling indicated by the model combined with greater bycatch
probability at moderate EKE values may  suggest a possible increase
in Mola bycatch risk near upwelling-derived frontal areas.

Similar to Mola, the temperature relationship in the bluefin tuna
model is also likely indicative of an association with upwelling.
This link to SST is corroborated by tracking studies documenting
fall migrations of bluefin tuna to cold waters off Point Conception
and Monterey Bay (Boustany et al., 2010; Kitagawa et al., 2007).
In these studies, the arrival of bluefin tuna in these waters gener-
ally coincided with the final days of major upwelling events, and
their departure often followed coastal advection of warm water due

to downwelling. High feeding rates indicated by internal-external
temperature ratios are known to occur during this time period
(Kitagawa et al., 2007; Whitlock et al., 2015), suggesting at least
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Fig. 8. Example bycatch prediction surfaces for November 2006 for (a) Mola, (b) bluefin tuna and (c) both species based on the final models. In the single-species plots,
color indicates mean predicted bycatch probability while transparency indicates estimated standard error according to (d). The multi-species plot exemplifies an integrated
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ycatch risk map; color indicates the mean of bycatch probability predictions for bot
riorities, but is weighted evenly here). Standard error (transparency) is not include

or November 2006. The solid black line indicates the Pacific coast of North America

artial dependence on upwelling-induced productivity that con-
ributes to greater bycatch risk near upwelling zones.

In comparison to Mola, bluefin tuna bycatch probabilities exhib-
ted a greater degree of spatial variation and bluefin appear to
ave a stronger association with the seasonal upwelling frontal
one. Supporting evidence for this comes from other studies
n tuna distributions. Laurs et al. (1984) found that nearly all
lbacore tuna (Thunnus alalunga) catch in the California Current
uring a two-month period occurred along the offshore side of an
pwelling-derived frontal boundary; this region was characterized
y low phytoplankton pigment concentration and temperatures
older than the nearby coastal waters of the Southern California
ight (18–20 ◦C) but warmer than the upwelling zone (10–12 ◦C).
imilarly, the increase in bycatch probability predicted by the

odel in areas further west, with low chlorophyll-a and tem-

eratures <17 ◦C, may indicate that the waters just offshore from
n upwelling frontal boundary provide conditions favorable to
luefin tuna as well. Additionally, the region of high bycatch corre-
ies (this mean could be weighted differently to reflect species-specific management
he multi-species plot. Dotted lines indicate kernel density contours of fishing effort

sponds well to areas of maximum frontal occurrence identified in
other studies (Powell and Ohman, 2015; Lynn and Simpson, 1987).
Frontal zooplankton concentrations that could support schools of
forage fish combined with clear, low-chlorophyll water could facil-
itate foraging for visual predators such as tunas (Murphy, 1959).
The potential dependence of foraging bluefin tuna on upwelling-
derived fronts in the CCLME would provide a plausible explanation
for both the oceanographic relationships described by the model
and the spatial bycatch patterns observed in this study.

The association with seasonal upwelling and upwelling-derived
fronts indicated by the models does explain variation in bycatch
rate of both species on monthly timescales, but variations on longer
timescales likely depend on additional complex interactions not
predicted by the model. For example, the PDO is thought to influ-

ence nutrient availability through structural changes in coastal
upwelling cells during contrasting phases (Chhak and Di Lorenzo,
2007). The apparent response of only bluefin tuna bycatch rates
to PDO regime shifts suggests that the relationships of both Mola



1 s Rese

a
m
D
c
2
s
r
s
o
v
o
1
t
a
m

r
fi
a
i
i
a
f
t
b
(
r
i
m
I
m
e
u

t
c
t
a
a
u
a
s
b
t
O
r
t
a
t
e
c
w
s
e

m
r
F
e
h
a
f
t
2
i
h

62 N. Hahlbeck et al. / Fisherie

nd bluefin bycatch to upwelling alone are insufficient to explain
ulti-annual patterns in these species’ interactions with the CA
GN fishery. One possible additional factor may  be PDO-linked
hanges in community structure at several trophic levels (Du et al.,
015; Zwolinski and Demer, 2014). Differences in trophic relation-
hips among species could alter the nature of individual species’
elationships to upwelling in the context of a new community
tructure. A second explanation may  be shifts in the distribution
f bluefin across the North Pacific. Decadal-scale environmental
ariability has been linked to bluefin recruitment and the number
f fish that make the West-East trans-Pacific migrations (Polovina,
996; Sakuramoto, 2016). Further investigation into the complex
ies between large-scale climate indices, mesoscale ocean features
nd species life-history traits would improve the ability of bycatch
odels to capture variation at multiple spatial and temporal scales.

The results of this study illustrate the potential utility of
emotely sensed dynamic variables in understanding patterns of
sheries bycatch. The models exhibited relatively high prediction
ccuracy (rp2 > 0.5) and explained more than 60–70% of variabil-
ty in incidental catch of Mola and bluefin tuna. With continued
mprovements in resolution and coverage of remotely sensed vari-
bles and derived products that better describe dynamic ocean
eatures such as fronts, this type of model could become a valuable
ool for ecosystem management through predictions of integrated
ycatch risk for multiple species in conjunction with target catch
Fig. 8). Additional data collection to better represent the cur-
ent state of the entire fishery would also be beneficial to model
mprovement. Observer placement is subject to vessel size, which

ay  introduce bias in terms of fishing location and practice.
n addition, the redistribution of fishing effort following major

anagement changes necessitates an examination of how fish-
ry characteristics affect bycatch rates and likely add variability
nexplained by the model.

Currently, the CA DGN fishery is managed using multiple spa-
iotemporal closures and gear restrictions to reduce turtle and
etacean bycatch, but little attention has been focused on large
eleost fish species. Examining bycatch patterns of multiple species
llows us to better understand tradeoffs, and ensure that our man-
gement solutions do not create new problems. For example, it is
nknown whether the high Mola bycatch risk predicted in late fall is
n effect of peak effort timing alone, or whether higher fishing pres-
ure may  be compounding the effect of other seasonal influences on
ycatch risk. The results of this study also suggest increased bluefin
una bycatch risk in specific areas 150–200 km offshore during
ctober-December, partially overlapping maximum Mola bycatch

isk in space and time. Therefore, these models could inform more
argeted tools for dynamic ocean management, such as dynamic
rea closures based on integrated bycatch ratio predictions for mul-
iple species, or dynamic seasonal closures based on changes in
nvironmental conditions and community structures rather than
alendar months. Important to the success of these approaches
ould be the addition of model predictions for the catch of target

pecies as well (e.g. Ward et al., 2015; Dunn et al., 2016; Watson
t al., 2009).

Advancing dynamic tools for integration into current manage-
ent strategies is a crucial step towards improving EBFM and

educing bycatch, which is a key mandate in the Magnuson-Stevens
isheries Conservation and Management Act. In the CA DGN fish-
ry, Mola are caught at three times the rate of swordfish, despite
olding no commercial value. Pacific bluefin tuna also comprise

 significant component of incidental catch in the fishery at one-
ourth the total catch of swordfish despite having been reduced

o less than 4% of their unfished biomass across the Pacific (ISC,
016). Consequently, development of bycatch models that could

nform management efforts is of significant interest. The relatively
igh prediction accuracy shown in this case study suggests that
arch 191 (2017) 154–163

multi-species bycatch prediction models have the potential to help
to inform ecosystem management in the CA DGN fishery. Broader
application of these models to global bycatch concerns across gear
types could help reduce unwanted catch of additional species and
ultimately improve the sustainability of fisheries.
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